Unique Paths
A robot is located in the top-left corner of a m x n
grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time.
The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
package questions
import _utils.UseCommentAsDocumentation
import utils.shouldBe
import java.math.BigInteger
import java.util.*
/**
* A robot is located in the top-left corner of a `m x n` grid (marked 'Start' in the diagram below).
* The robot can only move either down or right at any point in time.
* The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
*
* <img src="https://assets.leetcode.com/uploads/2018/10/22/robot_maze.png" height="150" width="350"/>
*
* How many possible unique paths are there?
*
* [Source](https://leetcode.com/problems/unique-paths/)
*/
@UseCommentAsDocumentation
// Naive approach (times out for larger value)
private class UniquePathsNaive { // this times out for large value
private enum class Dir { R, D }
private var answer = 0
fun uniquePaths(m: Int, n: Int): Int {
if (m == 1 && n == 1) return 1
traverse(Dir.R, 0, 0, m - 1, n - 1) // go right
traverse(Dir.D, 0, 0, m - 1, n - 1) // go down
return answer
}
private fun traverse(direction: Dir, posX: Int, posY: Int, rowMaxIndex: Int, colMaxIndex: Int) {
if (posX > colMaxIndex || posY > rowMaxIndex) {
return
}
if (direction == Dir.R) {
val newPositionX = posX + 1
if (newPositionX > colMaxIndex) {
return
}
if (newPositionX == colMaxIndex && posY == rowMaxIndex) {
answer++
} else {
traverse(Dir.R, newPositionX, posY, rowMaxIndex, colMaxIndex)
traverse(Dir.D, newPositionX, posY, rowMaxIndex, colMaxIndex)
}
} else {
val newPositionY = posY + 1
if (newPositionY > rowMaxIndex) {
return
}
if (posX == colMaxIndex && newPositionY == rowMaxIndex) {
answer++
} else {
traverse(Dir.R, posX, newPositionY, rowMaxIndex, colMaxIndex)
traverse(Dir.D, posX, newPositionY, rowMaxIndex, colMaxIndex)
}
}
}
}
// https://leetcode.com/problems/unique-paths/discuss/254228/Python-3-solutions:-Bottom-up-DP-Math-Picture-Explained-Clean-and-Concise
// Approach III: Maintain array of arrays
private class UniquePathsArraysOfArray {
fun uniquePaths(m: Int, n: Int): Int {
val dp = Array<Array<Int>>(m) {
Array<Int>(n) { 0 }
}
for (row in 0..dp.lastIndex) {
for (col in 0..dp[0].lastIndex) {
if (row == 0 && col == 0) {
dp[row][col] = 1 // only one way to get to (0,0) is moving left
} else if (row == 0) {
dp[row][col] = dp[row][col - 1] // only way to get to first row is move up
} else if (col == 0) {
dp[row][col] = dp[row - 1][col] // only way to get to left col is move left
} else {
dp[row][col] = dp[row - 1][col] + dp[row][col - 1] // two ways
}
}
}
return dp[m - 1][n - 1]
}
}
// another way
// Approach II: Use Combination (Yes, from high school maths)
private class UniquePathsUsingCombination {
fun uniquePaths(m: Int, n: Int): Int {
// there are (m-1)+(n-1) moves to get to the destination
// Among (m+n-2) moves, you can have max of (m-1) downs and max of (n-1) rights
// how do you combine these Ds and Rs to get to the destination?
// C(n, r) = n!/(n-r)!/r!
// C(m+n-2, m-1) = (m+n-2)!/(n-1)!/(m-1)!
// GOTCHA: 50! can't fit in Long so use BigInteger :O
val _factCache = TreeMap<Int, BigInteger?>()
val min = minOf(m - 1, n - 1)
val max = maxOf(m - 1, n - 1)
val denominator = factorial(min, _factCache) * factorial(max, _factCache)
val numerator = factorial(m + n - 2, _factCache)
return (numerator / denominator).toInt()
}
/**
* Efficient if [m] sent to it is in sorted as it starts from already calculated lesser value
* if it exists
*/
private fun factorial(m: Int, factCache: TreeMap<Int, BigInteger?>): BigInteger {
if (factCache.containsKey(m)) return factCache[m]!!
// add it to TreeMap i.e. key-sorted map
factCache[m] = null
// then find the lower key whose factorial has already been calculated
val startFrom = factCache.lowerKey(m) ?: 1 // else start from 1
var ans: BigInteger = factCache[startFrom] ?: BigInteger.ONE // fact(1)=1
for (i in startFrom + 1..m) {
ans = ans.multiply(i.toBigInteger())
}
factCache[m] = ans
return ans
}
}
fun main() {
UniquePathsNaive().uniquePaths(m = 3, n = 2) shouldBe
UniquePathsUsingCombination().uniquePaths(m = 3, n = 2) shouldBe
UniquePathsArraysOfArray().uniquePaths(m = 3, n = 2) shouldBe 3
UniquePathsNaive().uniquePaths(m = 7, n = 3) shouldBe
UniquePathsUsingCombination().uniquePaths(m = 7, n = 3) shouldBe
UniquePathsArraysOfArray().uniquePaths(m = 7, n = 3) shouldBe 28
UniquePathsNaive().uniquePaths(m = 3, n = 3) shouldBe
UniquePathsUsingCombination().uniquePaths(m = 3, n = 3) shouldBe
UniquePathsArraysOfArray().uniquePaths(m = 3, n = 3) shouldBe 6
UniquePathsArraysOfArray().uniquePaths(m = 51, n = 9) shouldBe
UniquePathsUsingCombination().uniquePaths(m = 51, n = 9)
// UniquePathsNaive().uniquePaths(m = 51, n = 9) // Leetcode times out for this
}
Updated on 2021-11-20