Max Subarray
Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum. Source – Solution
package questions
import _utils.UseCommentAsDocumentation
import utils.assertAllWithArgs
/**
* Given an integer array nums, find the contiguous subarray (containing at least one number)
* which has the largest sum and return its sum.
* [Source](https://leetcode.com/problems/maximum-subarray/) – [Solution](https://leetcode.com/problems/maximum-subarray/discuss/20396/Easy-Python-Way)
*/
@UseCommentAsDocumentation
private fun maxSubArray(nums: IntArray): Int {
for (i in 1..nums.lastIndex) {
if (nums[i - 1] > 0) { // if previous sum is -ve, then no use for it so keep the ith index as it is i.e. discard the prev sums
nums[i] += nums[i - 1] // mutate with sum of positives
}
}
return nums.maxOrNull()!!
}
private fun maxSubArrayII(nums: IntArray): Int {
var best = 0
var sum = 0
for (i in 0..nums.lastIndex) {
sum = maxOf(nums[i], nums[i] + sum)
best = maxOf(best, sum)
}
return best
}
private fun maxSubArrayIII(nums: IntArray): Int {
var best = 0
for (i in 0..nums.lastIndex) {
var sum = 0
for (j in i..nums.lastIndex) {
sum += nums[j]
best = maxOf(best, sum)
}
}
return best
}
fun main() {
assertAllWithArgs(
6,
argsProducer = { intArrayOf(-2, 1, -3, 4, -1, 2, 1, -5, 4) },
::maxSubArray,
::maxSubArrayII,
::maxSubArrayIII
)
assertAllWithArgs(
23,
argsProducer = { intArrayOf(5, 4, -1, 7, 8) },
::maxSubArray,
::maxSubArrayII,
::maxSubArrayIII
)
}
Updated on 2021-10-23